Enhanced EEG gamma-band activity reflects multisensory semantic matching in visual-to-auditory object priming

نویسندگان

  • Till R. Schneider
  • Stefan Debener
  • Robert Oostenveld
  • Andreas K. Engel
چکیده

An important step in perceptual processing is the integration of information from different sensory modalities into a coherent percept. It has been suggested that such crossmodal binding might be achieved by transient synchronization of neurons from different modalities in the gamma-frequency range (>30 Hz). Here we employed a crossmodal priming paradigm, modulating the semantic congruency between visual-auditory natural object stimulus pairs, during the recording of the high density electroencephalogram (EEG). Subjects performed a semantic categorization task. Analysis of the behavioral data showed a crossmodal priming effect (facilitated auditory object recognition) in response to semantically congruent stimuli. Differences in event-related potentials (ERP) were found between 250 and 350 ms, which were localized to left middle temporal gyrus (BA 21) using a distributed linear source model. Early gamma-band activity (40-50 Hz) was increased between 120 ms and 180 ms following auditory stimulus onset for semantically congruent stimulus pairs. Source reconstruction for this gamma-band response revealed a maximal increase in left middle temporal gyrus (BA 21), an area known to be related to the processing of both complex auditory stimuli and multisensory processing. The data support the hypothesis that oscillatory activity in the gamma-band reflects crossmodal semantic-matching processes in multisensory convergence sites.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gamma-band activity as a signature for cross-modal priming of auditory object recognition by active haptic exploration.

When visual sensory information is restricted, we often rely on haptic and auditory information to recognize objects. Here we examined how haptic exploration of familiar objects affects neural processing of subsequently presented sounds of objects. Recent studies indicated that oscillatory responses, in particular in the gamma band (30-100 Hz), reflect cross-modal processing, but it is not clea...

متن کامل

What you see is not (always) what you hear: induced gamma band responses reflect cross-modal interactions in familiar object recognition.

Gamma-band responses (GBRs) are hypothesized to reflect neuronal synchronous activity related to activation of object representations. However, it is not known whether synchrony in the gamma range is also related to multisensory object processing. We investigated the effect of semantic congruity between auditory and visual information on the human GBR. The paradigm consisted of a simultaneous p...

متن کامل

Does High Frequency Transcutaneous Electrical Nerve Stimulation (TENS) Affect EEG Gamma Band Activity?

Background: Transcutaneous electrical nerve stimulation (TENS) is a noninvasive, inexpensive and safe analgesic technique used for relieving acute and chronic pain. However, despite all these advantages, there has been very little research into the therapeutic effects of TENS on brain activity. To the best of our knowledge, there is no evidence on the effect of high frequency TENS on the gamma ...

متن کامل

Semantic-based crossmodal processing during visual suppression

To reveal the mechanisms underpinning the influence of auditory input on visual awareness, we examine, (1) whether purely semantic-based multisensory integration facilitates the access to visual awareness for familiar visual events, and (2) whether crossmodal semantic priming is the mechanism responsible for the semantic auditory influence on visual awareness. Using continuous flash suppression...

متن کامل

Auditory event-related response in visual cortex modulates subsequent visual responses in humans.

Growing evidence from electrophysiological data in animal and human studies suggests that multisensory interaction is not exclusively a higher-order process, but also takes place in primary sensory cortices. Such early multisensory interaction is thought to be mediated by means of phase resetting. The presentation of a stimulus to one sensory modality resets the phase of ongoing oscillations in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 42 3  شماره 

صفحات  -

تاریخ انتشار 2008